

MiTek Lunch and Learn Courses

MiTek offers complimentary continuing education classes to engineers, architects, building designers and code officials. These one- to two-hour presentations include either breakfast or lunch, and aim to help educate attendees on common topics such as product design loads, IBC and IRC structural codes requirements, various design methods and recommendations, and much more. Attendees can build valuable partnerships within the industry and will receive a certificate of attendance for PDHs and may earn continuing education units and/or learning units.

USP101: Connector Basics #7315

1.0 AIA/CES LU/HSW or 1.0 AIBD/CE or 0.10 ICC CEU

Course Summary: This course overviews testing and product design loads in accordance with ICC-ES AC13 and ASTM D1761 for USP's connector products. Additional topics include product capacities in accordance with NDS[®], construction load and wind/seismic duration factors, and selecting appropriate load carrying devices.

USP301: Intro to Wind Design #5724

1.0 AIA/CES LU/HSW or 1.0 AIBD/CE or 0.10 ICC CEU

Course Summary: This course overviews common wind terminology concepts, how wind forces are applied, and how they travel through a building to the foundation. Common wood frame storm failures and design requirements of the IBC and IRC codes and approved standards will also be discussed.

USP502: Residential Wood Deck Construction #7314

1.0 AIA/CES LU/HSW or 1.0 AIBD/CE or 0.10 ICC CEU

Course Summary: This course overviews the structural code requirements of the International Residential Code[®] (IRC) for residential wood deck construction, plus design requirements and industry best practices.

USP600: Wood Frame Residential Detailing #19375

2.0 AIA/ CES LU/HSW or 2.0 AIBD CE or 0.2 ICC CEU

Course Summary: This presentation is intended to provide designers, architects, builders and engineers with a practical assessment of wood framing construction practices and detailing. The presentation includes foundation to wall, wall construction, wall to roof and methods and device examples for solving wall bracing, shear panels and uplift conditions.

PREFERRED
EDUCATION
PROVIDER

Provider #0005336

MiTek Lunch and Learn Courses (continued)

USP603: IRC Wall Bracing #7316

1.0 AIA/CES LU/HSW or 1.0 AIBD/CE or 0.10 ICC CEU

Course Summary: This course overviews the 2015 International Residential Code® wall bracing requirements. It will address basic concepts of lateral loads and their effects on a structure, different types of braced wall construction, and limitations of the prescriptive method along with design examples.

USP607: Metal Connector Performance #7317

1.0 AIA/CES LU/HSW or 1.0 AIBD/CE or 0.10 ICC CEU

Course Summary: This course overviews the causes and effects of corrosion on metal connectors used in wood construction. Solutions for how to prevent corrosion and how preservative treated and fire retardant treated lumber impact steel corrosion are also discussed.

MII001: How to Read Truss Documentation #9773

1.0 AIA/CES LU/HSW or 1.0 AIBD/CE or 0.10 ICC CEU

Course Summary: This course overviews the forces and stresses present in metal plated connected roof and floor trusses, along with interpreting truss design drawings and reviewing typical engineering practices.

MII002: How to Inspect Metal Plate #9772

1.0 AIA/CES LU/HSW or 1.0 AIBD/CE or 0.10 ICC CEU

Course Summary: This course overviews specification requirements of metal plate connected roof and floor trusses, how to read and use basic truss placement plans and truss design drawings, and truss design provisions of the I-codes, NDS, and ANSI/TPI design specifications.

MII003: Temporary & Permanent Restraint #17984

1.0 AIA/CES LU/HSW or 1.0 AIBD/CE or 0.10 ICC CEU

Course Summary: This course overviews restraint & bracing for metal plate connected wood trusses. Temporary restraint & bracing used to provide support to trusses during installation are reviewed as well as permanent restraint & bracing support.

Z1604: Continuous Tie-Down Systems #16538

1.0 AIA/CES LU/HSW or 1.0 AIBD/CE or 0.10 ICC CEU

Course Summary: This course reviews what is needed to design a continuous tie down system, how to distribute lateral loads and calculate uplift loads and shrinkage, how to select the type of system and its components, determine and specify tie down systems contribution or shear wall deflections, and design end posts.

MII004: Light Frame Mid-Rise Buildings – Design Basics #19185

1.0 AIA/CES LU/HSW or 1.0 AIBD/CE or 0.10 ICC CEU

Course Summary: This course overviews the steps needed to design multi-level wood buildings to maintain a proper load path to the foundation. Topics will include restraining hardware, the ASCE 7-16 ASD Load combination equations that control the design of tensile load resisting elements, and the equations that control the design of compression load resisting elements.

PREFERRED
EDUCATION
PROVIDER

Provider #0005336